A computation of minimal polynomials of special values of Siegel modular functions

نویسنده

  • Tsuyoshi Itoh
چکیده

Recently, Fukuda and Komatsu constructed units of a certain abelian extension of Q(exp(2π √ −1/5)) using special values of Siegel modular functions. In this paper, we determine the minimal polynomials of these units.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the singular values of Weber modular functions

The minimal polynomials of the singular values of the classical Weber modular functions give far simpler defining polynomials for the class fields of imaginary quadratic fields than the minimal polynomials of singular moduli of level 1. We describe computations of these polynomials and give conjectural formulas describing the prime decomposition of their resultants and discriminants, extending ...

متن کامل

On Atkin-Lehner correspondences on Siegel spaces

‎We introduce a higher dimensional Atkin-Lehner theory for‎ ‎Siegel-Parahoric congruence subgroups of $GSp(2g)$‎. ‎Old‎ ‎Siegel forms are induced by geometric correspondences on Siegel‎ ‎moduli spaces which commute with almost all local Hecke algebras‎. ‎We also introduce an algorithm to get equations for moduli spaces of‎ ‎Siegel-Parahoric level structures‎, ‎once we have equations for prime l...

متن کامل

Construction of a Normal Basis by Special Values of Siegel Modular Functions

We consider certain abelian extensions K, k1 of Q(e2πi/5) and show by a method of Shimura that a normal basis of K over k1 can be given by special values of Siegel modular functions.

متن کامل

On a unit group generated by special values of Siegel modular functions

There has been important progress in constructing units and Sunits associated to curves of genus 2 or 3. These approaches are based mainly on the consideration of properties of Jacobian varieties associated to hyperelliptic curves of genus 2 or 3. In this paper, we construct a unit group of the ray class field k6 of Q(exp(2πi/5)) modulo 6 with full rank by special values of Siegel modular funct...

متن کامل

Arithmetic Intersection on a Hilbert Modular Surface and the Faltings Height

In this paper, we prove an explicit arithmetic intersection formula between arithmetic Hirzebruch-Zagier divisors and arithmetic CM cycles in a Hilbert modular surface over Z. As applications, we obtain the first ‘non-abelian’ Chowla-Selberg formula, which is a special case of Colmez’s conjecture; an explicit arithmetic intersection formula between arithmetic Humbert surfaces and CM cycles in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Comput.

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2003